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Equations of Hamilton-Jacobi type arise in many areas of application, d
including the calculus of variations, control theory and differential games.

The associated initial-value problems almost never have global-time classical

solutions, and one must deal with suitable generalized solutions. The correct

class of generalized solutions has only recently been established by the

authors. This article establishes the convergence of a class of difference

approximations to these solutions by obtaining explicit error estimates.

Analogous results are proved by similar means for the method of vanishing

viscosity.
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TWO APPROXIMATIONS OF SOLUTIONS OF
HAMILTON-JACOBI EQUATIONS

M. G. Crandall and P. L. Lions

Introduction. The main results of this paper concern the approximation of solutions of the

Cauchy problem for first-order partial differential equations of Hamilton-Jacobi type.

Most of the presentation here will be in the context of problems of the form

+ H(Du) - 0 in ft x (0,w)
(IvP) u(x.O) - uo(x) in AN

where H e c(R N ) (the continuous functions on 0), u0 e Buc(a") (the bounded and

uniformly continuous functions on 0), and Du - (Ux .... ,u ) is the spatial gradient

of u. The problem (IVP) is technically simpler than the "general case" in which the

Hamiltonian H may depend on x, t and u as well as Du, and we prefer to keep the

ideas clear and constants simple by dealing primarily with (IVP). (See the comments in

Section 4 regarding more general equations.) Two sorts of approximations of (IVP) will be

considered here - finite difference schemes and the method of vanishing viscosity. Before

describing these approximations, we briefly review some basic facts concerning (IVP).

Analysis by the method of characteristics shows that if H and 11 are smooth and

u0 is compactly supported, then (IVP) will typically have a unique C2 solution u on

some maximal time interval 0 ( t < T for which lim u(x,t) exists uniformly, but this
t+r

limiting function is not continuously differentiable. Thus Du "becomes discontinuous"

at t a T (or "shocks form"). If one insists upon a solution of (IVP) which is defined

for all t > 0, it is therefore necessary to deal with functions which are not smooth. On

the other hand, it is relatively easy, in the above circumstances, to produce Lipschitz

continuous functions u on N x 10,-) which satisfy (IVP) if the equation is understood

in the "almost everywhere" sense. However, "generalized" solutions in this sense are not

unique.

Supported in part by the National Science Foundation under Grant No. MCS-8002946.
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Recently, a way of identifying a uniquely existing solution for a class of problems

which include (IVP) as a special case was given by the authors in (21, [3] (see also

[1). The relevant solutions of scalar nonlinear first order equations are called

Oviscosity solutions" and they are known to be the solutions of primary interest in many

areas of application (e.g., optimization, control theory, differential games -- ). See,

e.g., 161, (101, [113. The term "viscosity solutions" refers to the fact that all

solutions obtained via the method of vanishing viscosity are in this class. The main

properties of viscosity solutions relevant for the current work are recalled, in the

context of (IV), in Section 1.

In this paper we will approximate the viscosity solution of (IVP) by solutions of the

general class of finite difference schemes introduced below. Indeed, explicit error

estimates are given relating the viscosity solution of (IVP) and the solutions of these

finite difference approximations. We also show, under suitable hypotheses, that if

C ) 01 u is the solution of the problem

au-C + H(Du - CAU -0 in ' x(0,-)

(V)€ u(xNO) - Uo(x) in N

and u is the viscosity solution of (IW), then Iu (x,t) - u(xt)l ( c / for x e RP

and t ) 0. This is done in Section S. Estimates like this have also been obtained in

W. H. Fleming (7] and P. L. Lions 1101 by indirect arguments involving stochastic

differential games.

We now describe the class of difference approximations to be considered here. For

notational simplicity only, we will assume that N - 2 in most of the presentation. The

corresponding definitions and results for general N will be clear from this special case,

and we will not explicitly formulate them. A generic point in 22 will be denoted by

(x,y) and we will write Du - (ux,uy). Given mesh sizes Ax,Ay,at > 0, the value of our

numerical approximation at (xjlyk~tn ) - (jAx,kAy,nAt) (J,k,n e z) will be denoted by

U n k . Capital letters U, V, I-* will denote functions on the x,y lattice
jk

A - {(x Jyk) a J,k e ) and their values at (xjyk) will be written jk' Vk.* .

-2-



Thus Un represents the state of our numerical approximation at the time level ni and

it is a function on A with values US n . The notations A tt/./K, XY - it/bI,j .k
x J1)- U and AY u - U will be used.

Jk J+I,k j,k +. j,k jk+i J,k

The discrete approximations of (1VP) of interest here are explicit marching schemes of

the form
Un+k'-mu n)

jk J-p,k-r..U jlq+lk+1 ,

whore p, q, r, a are fixed nonnegative integers and G is a function of (p+qi2)(r+s+2)

variables. (At this stage we are ignoring the dependence of G on AK, AV and At.) To

simplify notation, (1) will also be written as

(2) U1+ 1 &U n )

We say that (1) has dLfferonced form* if there exists a function g such that

j(UJ-p,k-r'"' U J+q+4,k+s+i

(3)

+j-p~k-r e+ Uj1q,kts41 '+ ij-p,k-r g+ Uj4.q4. k's

In order that the scheme (1), (3) be consistent with the equation ut + H(uxuy) - 0

occurring in (IVP), we must have

(4) g(A,...,at b,...,b) - H(a,b) for ab 6 at

When (3) holds we call g the numercael Hlamiltonian of the scheme. Finally, we will say

that (2) (or (3)) is monotone on t-R,RJ if O(Ui-p,k.r,**. Uj+q+,k+e+1) is a

nondecreasing function of each argument as long as I A ,, I , d u ,I 4 R for

J-p 4 A 4 J~q, k-r 4 a 4 k+eI4, J-p 4 A' 4 J+q41, k-r m' 4 k+@. Roughly speaking. R

will be a priori bound on Iuxl, Iuyl for the solution of (IVP).

Our main result is

Theorem Is Lot B t X2 + I* be continuous and u0  be bounded and Lipschitz continuous

on X2 with L as a Lipschitz constant. For ex , Xy ) 0 and fixed, let the scheme (2)

have differenced form, be monotone on (-(L+I),L+I1 and be consistent with (1VP). Assume

the numerical IHamiltonian g is locally Lipschits continuous. Define T0  by

-3-



UOk U " (xj'yk) and then U
n , 

n " 1,2#... by (2). Let u be the viscosity solution of

(lVP). Then there is a constant c depending only on suplu 0 l, L, g and N& such that

(5) 'uk - u(xlxYk#n)t)I c(/I)

for 0 4 n • N and all J,k.

The body of the paper is structured in the following ways Section 1 is devoted to a

review of the properties of viscosity solutions as needed herein. Examples of difference

schemes satisfying the assumptions of Theorem 1 are presented in Section 2. Theorem I is

proved in Sections 3 and 4, with Section 3 consisting of preparatory lamas on the mapping

U * G(U) while Section 4 contains the proof of (5). Section 4 concludes with remarks on

variations of Theorem 1. The approximation of (IVP) by (IVP) is treated in Section 5.

We bring this long introduction to a close with some remarks: First of all, sme

convergence results are given in S. N. Kruzkov [81 for convex Hamiltonians H, using some

estimates available only in this special case. Next (see, e.g., P. L. Lions (101 Chapter

16) problems like (IVP) are closely related to hyperbolic systems satisfied by Du. If

N - 1 this relation is quite simple, since if u solves (IVP), then v ux

solves a scalar conservation laws

1v + (-(v)) - in R x0,- )

at ax

du0
v(x,O) -v(x) -(W) in R

0dx

In this case the schemes presented here are related to those studied by N. G. Crandall and

A. Naida [4], N. N. Kuznetsov (8] via the corresponding substitutions

n n

,nL n _, Ukq+lUk
k Ax A+k Ax

We refer the reader interested in other aspects of amilton-Jacobi equations to N. G.

Crandall and P. L. Lions [2], P. L. Lions [101, and M. G. Crandall, L. C. Evans and P. L.

Lions [1]. Finally we remark that, in an ongoing investigation, P. Souganidis [11] has

-4-



formulated general approximation results which appear to apply alike to dimensional

splitting, max-min representations, approximation by (XVP) end numerical scheme. His

arguments are related to those given herein.
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Section 1. Viscosity solutions of (IVP).

As recalled in the Introduction, one cannot solve (IVP) in a classical way on

am x (0O,) in general, while Lipschitz continuous "generalized solutions" in the almost

everywhere sense exist under mild assumptions but are not unique (examples are given, for

instance. in 12]). The resolution of these difficulties is given in (2], the results of

which imply, in a round-about way, the theorem stated below. This theorem is proved

directly in 1]. (We use x to denote points in M below.)

Theorem (Existence and uniqueness). Let H e C(N), u0 e BUC(Rt). Then there is exactly

one function u e BUC(RN x (0,TI) for all T > 0 such that u(x,O) -u(x) and for every

* cl(1? x (0,-)) and T > 0.

If (xo,t 0 ) is a local maximum point of u -

(1.1) on RM x (0,Tj, then

a (x0 ,t0 ) + H(D#(x0 ,t0 )) 4 0at0

and

If (x 0 ,t 0 ) is a local minimum point of

(1.2) u- * on x (0,T), then

at (x 0 ,t 0 ) + H(D#(x0 ,t0 )) ) 0

The function u whose existence and uniqueness is asserted by the theorem is called

the viscosity solution of (TVP). A continuous function u on RN x 10,T] which satisfies

(1.1), (1.2) is called a viscosity solution of the equation ut + H(Du) - 0 on

x (0,T]. See (1], (21 for the appropriate notions for more general equations. There

are also useful equivalent ways to formulate the notion of viscosity solutions ([i],

(21). Among the desirable properties of the notion of viscosity solutions is its
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consistency with the classical concept. That is, if u is a classical (i.e., C1)

solution of ut + H(Du) - 0, then it is a viscosity solution and if u is a viscosity

solution then ut(xot O ) + H(Du(xotG)) - 0 at any point (Oo,t O ) where u is

differentiable.

The other information we want to recall consists of various estimates on the behavior

of solutions of (MW). To record these, for each t ) 0 lot S(t) i UC(A) - BUC(jP) be

the tine t map associated with (VP). That is, S(t)uo(x) - u(xt) where u is the

viscosity solution of (VP). We also put IMi - suplf(x)I and f+ - max(f,O). The next

result follows from 1211 see also 1].

Proposition 1.1. Let n e c(u?) and S(t) be as abovei u 0 ,v 0 e BuC(?), and t 0.

Then

(i) I(S(t)u - S(t)vo)+l 4 I(Uo-Vo)+l

(II) IS(t)uo - S(t)Vo0  4 ue-ve .

(iii) inf u0 4 tR(O) + S(t)u0 4 sup u•

I? RN
(iv) 18(t)uo(x+y) - s(t)uo(x)l 4 sup Iuo(z+y) - uo(a)i, for y e a?

see

IV) if L Is a Lipschitz constant for u0 , then it is also a Lipschitz constant for

S(t)u0  and IS(t)u 0 - S(r)uo1 - It-TI sup{IJ(p)I s IpI 4 L)

The key point here is (i). The estimate (i) implies (ii) upon using (i) with u0

and v0  interchanged. Clearly (i) also implies S(t)u0 > S(t)v0  if u0 4 v0, which in

turn implies (III) since v - c - tH(O) is a classical (and so the viscosity)solution of

(VP) with the constant initial datum c. Choosing v0 - sup u0  or inf u0  and using the

order preserving property yields (iii). Next (iv) follows from (II) because St)U (-+y)

is the solution of (VP) for the initial datum u0 (C+y). Since (iv) shows that a modulus

of continuity for u0  is also a modulus for S(t)u0 (e), the ficrs ...tertion of (v) is

clear. The Lipschitz property in the time is easily deduced from tt3 ition

u t + H(Du) 0 in the viscosLty sense (see 21) or in other ways.
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Section 2. Zxamples

We begin with N - 1 and write (IVP) in the form( ut + H(ux) = 0, for t > 0, x e at
(2.1)

u(x,0) - u0 (x), for x e A

in this case. As the first example, we consider the scheme

n U
n+l n+ _ t1l -11 _(2.2) Un U=n -at 2H x Uxx

2dAx

where 0 > 0 is given. The relation (2.2) may be rewritten as

n+1U +% \ _j __(AUn - U
(2.2)1' U - nAtH xn -

j Ui Ax L A

making the differenced form clear. The numerical Hamiltonian is given by

g(a,A) - H((a+B)/2) - (O-a)O/
x  

for aQ, e R. clearly g(aa) = H(a) and so (2.2) is

consistent. The schems(2.2) is monotone on [-RR] if 1 - 20 ) 0 (onotonicity in

U1, and 0 - XIH,(a)I/2 0 0 for jal 4 R (monotonicity in UJ+ i, U;). These two

relations are achieved by first choosing 0 < 0 < 1/2 and then Ax sufficiently small.

This scheme is analogous to the Lax-Friedrichs scheme for conservation laws, see [41.

In a similar way, the schemes

(2.3) Un+1 
- (;t 1 . ;

or

(2.4) U 1 U - AtB I

have the desired properties if H is nonincreasing (for (2.3)) if H is nondecreasing

(for (2.4)) and 1 ) XXINH(a)I for jai ( R. Those are simple "upwind" schemes. Next,

let %e R end as u 'me, H -) o 0, so H' changes sign at a= C. Set G(s)- 1

if s 4 60 , 8(s) 0 if s > aO . We consider the scheme

-8--



n n U - un
n+1 n i U

(2.5) Ax = ) - ( o) A (H - 0)) +

+, ( (H wH(re -^ + H(
Ax (9) H~ 0

The numerical Hamiltonian is now I
g(,)- 80B)(108) - H1(0 0 )) +(i-e(m))(H(Q) - MOO)) + H(MO) I.

and thus (2.5) is consistent. Remarking that g(a,B) may be written as

g(u,o) - 11(6 A a ) + We v .0) - HOcY, where "A" and *v" denote "maximum" and

"minimum", it is clear the g is locally Lipschitz if H Is locally Lipschitz. Finally

one checks that (2.5) is monotone on f-R, R) if I - )x"H'(a)J ) 0 for Jul c R.

In fact, all the above examples are merely adaptations to Hamilton-Jacobi equations of

well-known schemes for conservation laws via the remarks in the Introduction. As explained

in, e.g., M. G. Crandall and A. Majda [4), there ts a class of schemes for the conservation

law vt + (H(V))x 0 called "monotone, in conservation form" with the following

structutre: V n+ 1 . n _ x x n n
strute X V a+g(Vjp,.. .,Vj+) - now the function g is called the

"numerical flux". Consistency then means, as before, g(a,...,a) - H((), and monotonicity

means that the map (Vn W Vfl) is a non-decreasing function of each VL. Then we may

write the corresponding scheme for the approximation of (IVP),

n+ n aX n

U U _ It g( +- U Ax " AX

which is in differenced form and consistent.

Next if N > 1, the relation between (IVP) and conservation laws disappears. For

N - 2 (to simplify, as always) we mention the analogue of the Lax-Friedrichs scheme, i.e.

n+ n r n n U n n
nU n rl -hi I ,k i-1,k i ,k+1 j ,k-1

(2.6) J ,k At\ 2Ax I 2Ay )+
U n n n 2 n n

-0 eU+l ~ k - 2 k) (U~k+ + Ujjk.1 -2~

-9-



which is consistent, in differenced form. It is also monotone on [-R,R] provided that:

S 0 . -, I - x IH' (C,8) 0, and e - XYIH'(Cg,)I 1 0 for Iml, 101 <R, where H!
4 1 2 1

denotes the derivative of H in its ith argument.

An a last example, let

f V+1 AYVn

S k  91 Ax . . Ax AY Y

and

+ G n nJ,k G2 (Wjp,kr,.., J+q+.k+s+1

" WA - At g ( + j-p,k-r
2 A 2 A " Ax Ay AY,..

be differenced form, monotone on [-RjR schemes consistent with vt + H (V . 0

and wt + 12 (W x,w) 0 respectively, where a e (0,I). Then the scheme
un+1l
UJ,k a G1(U k . +q+,k++) + ( )G (U, .. U hasI jprk-rs 2 J-pk-r" J+q+1,k++1 h
differenced form, is monotone on [-R,R] and is consistent with: + H (u +

at IH(u y +
H2 (UxU) 0. E.g., we could build schemes in this way for au + (, )+ H(-L = 0

y t Iax~ ~2 ayfrmsheeuo 3u 3w 2(w)
from schemes for y + H,(, x ) - 0 and + H2 y 0.

-10-



Section 3. Stability Properties of the Schemes

The notation in this Section assusies two space dimensions, but everything herein

easily generalizes to arbitrary dimensions. By capital letters U, V, etc., we denote

bounded biinfinite double sequences (U J,k (Jk)e2, i.e. bounded functions on 32, the

set of all such being £ (3
2
) which we equip with the norm

U. sup lUj,ki
j,kes

*2
Let G be the self-map of A (Z ) defined by (3), i.e.

+ A:U DkU AY &YAU
(3.1) G(U) jk - Atg( Jqksl +-p-r....J+qtl,k+s)

j,k  j,k -Ax . b . by

We now investigate the properties of G. By definition (2), (3) is monotone on

(-RR] if the restriction of G to C - (U e 1'(Z
2 ) : I AxU I - RAx, I AYU I C RAy,I'~m + L'm

for In e 3) preserves the natural ordering of £ ( 2). We identify A e R with the

constant function A on 22. From the form of G, it is clear that

G(u + A) - c() + A for all u e E1 2 ) and A R,

that is G commutes with the addition of constants. Now, it is a simple fact that order-

preserving mappings comuting with the addition of constants are non-expansive in L (Z2)

(M. G. Crandall and L. Tartar (51). indeed, if U, V e C then U r V + X with

A - I(U-V)+I. But V + x e C and thus (using monotonicity) we deduce:

a(u) 4 a(v + A) - (V) + A, 50

(3.2) I(&(u) - +
I G( - G (V )} I . 4 I(U -V )+ I .

which implies in particular, the non-expansiveness on C.

Another simple property of G is that it commutes with translations, i.e. if

Lm e Z are fixed and TI m  is the linear mapping defined by: (T ImU)J,k = Uj+t,k+m

then we have Tam(U) - (r U) for all V e 4(2). Using this property in conjunction

with (3.2) we can deduce

-11-



(3.3)~ IA' G(U) 1. ay U 1.

for all u e C. For example,

IAX G(U)I IT G* (U) - G (UJ)I Is(rI U) - (tJ)I
+ 1,0 - 1,0

IT U-l - IA 4U .

since T ' leaves invariant C for any X,. e z. An immediate consequence of (3.3) is

that G leaves C invariant (G(C) = C).

The last property we observe is the following: If n~j > 0 and u e c, then

*Gi(U) - n(U)E. C 1GJt1) _ Ua

i-I 1 i(U) - G GL.)0  (jI(U) - Ut,

and from the explicit form (3), we finally obtain:

(3.4) SG ~(U) - Gn(U)11. C j At K for n,j > 0, U e C

where K is given by:

(3.5) K - aup{Ig(t,)I 0 4 A 4 ptq+ I, 0 ICm -C r+s+1 I~ 4 R)

we record all these properties in

Proposition 3.1: Let R > 0 and C be defined as above. Let the scheme be monotone on

+C-R,RJ and G :C + I (z ) be given by (3) with g bounded on bounded sets. Then we

have:

Mi G(U) C G(V) for U,V e C, Ui C V

(ii) GCU4.A) -G(U) +O A for U e c, A e R

(iii) IGMU - MVI. C IU-Vi, for U,V e C

(v) IA;. G(LJ)I. C IA US., IA; G(U)I. C IAYU for U eCu

(v) G(C) C,

-12-



(vi) ISn+j(u) - an(u)in 4 j At x for U e C, nj A 0

where K is given by (3.5)1

(vii) SQ (U)I 4 I* + n At A, for U e C

where A - lg(O,...,0)I - IH(o,0)1.

The only new property is (vii) which is easily proved observing first that

Gn(0) - -n At g(0,0,...0) and so

IG n(U)| a lG (U) - Gn 1w + ,nI 'm)

( lulm+ n At A

1

2 13



Section 4. Proof of Theorem i

The proof of Theorem 1 given here is related to the proof of uniqueness of viscosity

solutions of (IVP) presented in [1]and it also involves estimates introduced in [2].

Throughout this section we will assume the hypotheses and notation of Theorem 1. In

addition, we will at first assume that

( x,y,t) * 0 as lxi + Iyi + * and
(4.1) U'n n 0 as lJl + Ikl +

hold uniformly for bounded t, nAt ) 0. This assumption allows a simplified presentation

and is easily relaxed later. Moreover, (4.1) holds if u0 + 0 as lxi + Iyl * -.

It will be convenient to define

(4.2) Q. - 2 x (0,-), -R 2 x [0,T]

and the discrete analogues

Qd A x (AteK) - ((xjYkfnAt) j,k - 0, 1 1 .... P n = 0,1...,)

(4.3)

d ((x.YknAt) e Qd s n 4 N)

Hereafter T > 0 and N e e+  satisfying

(4.4) (N-I)At < T C NAt
n

are fixed. We seek to estimate u(xlykmnAt) - UJk . To this end, we will assume

(4.5) sup (u(xjYksnht) -Un k)- >0
J) keZ

0(n(N

and then produce an upper bound on a. In exactly the same way, if
inf(u(xjYk.nAt) - eU ) -o < 0, we could estimate a and the conjunction of these

inf~u~jfykl j,k

estimates bounds (u(xjYk nAt) - Un

We are going to define a function * : Q x Qd + R which is a principal ingredient in

the proof. This function depends on a and T above as well as

(4.6) M - sup (luo()I + TIH(0,0)I) + I

)(len2

a positive parameter c, and a function B : R2 x R + R as follows: For (t,t) e Q and

-14-
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a Q d.

Cn,s) e 6

I' Jr. . 4,u
*C,,tf8) ,t) - U - 4 t+u) + ON + 5)0 (C-qt-8)

(4.7) V where (',s) - (xjfYk#fnt) and 0( t) - BOC/C,t/c)

We remark that (4.6) guarantees

(4.8) Jul 4 N on QT and le 4 K for 0 4 n 4 t

see Proposition 1.1 (ii) and Proposition 3.1 (vii). The function 0 of (4.7) vii

satisfy

B i smooth on R2 x I. 0 4 0 4 1, 0(0,0) - 1
(4.9)

and 0(,t)-o if IC 2 + t2 > I

as well as other conditions imposed later. The next step is to maximize 0 over

- d

Lense 4.1. Under the shove essumptions there is a point (C0 ,t 0 ,%,8 0 ) e 2 ,N such that

Mi) *(oC toon0 40 ) ) M(.,tAii 's) for (Ct n 's) e ,%

and

(i) (C 0 - 10 6 to - g) V 3/5

Proof. The existence of (9 ,t "O0e6) follows from the fact that if

( J .t .ii,s e) e , and

(4.10) VIFCC~ tJ,',L) 0 *p 1 sup
,.

then (4 ,t ,11 a ) remains bounded. Indeed, from (4.5), (4.7), (4.9) one seem that

(4.113 sup sup (u(x 3'Yk nAt) - Un k ) + 5m=Q +

QTN jkez

while (4.7), (4.8) imply

T(,t.f,s) 4 2K if B (0-f,t-s) 0

Hence (4.10) implies s¢( t, t- sI) > 0 for large 4 and so (4.nl)2 + (js1)2 C2.

From this, (4.1) and (4.7) we see that if l, i + In I ., then

lim sup T(C *t rl, ) 3 SK + 0/2. This contradicts (4.10), (4.11).
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To prove (ii), observe that

2m + (N + a/2)0C (Co-%,to-o) A C(Coto, o1%s)

• sup V ) 5M + a ,

so B¢(C 0-%0,t 0 -s0) (61 + 2)/1(101 + 0) t 3/5.

In what follows we will put

(4.12) C = (Ax + Ay + At) 
1 / 4  (A

x + A
¥ + 1)

1 /4(At)
1 /

4

although we will not use this relation except at certain points in the argument.

There are now several cases to be considered. These ares to,S0 > O; t0 ) O, so -

01 and to - 0, so > 0. We begin with the case to,s O > 0.

1st case: to > 0, so > 0.

It follows from Lemma 4.1 i) that (CO,t o ) is a maximum point on % of

(4,t) + u(£,t) - -a t + 1ON + ))0 -nOot-so). By the definition of viscosity solutions and

the equation solved by u, we therefore have

a 2
ONM + -9)DtOc T0t0sI+i

(4.13)

H(-(SM + -)D (0%t0 )) 0

(Here and below Dt BC, D B stand for the indicated derivatives of 8(C,t) which are

then evaluated at the point shown.)

The analogous estimate on the discrete side requires more work. Let

(4.14) (nos) - ((x o ,Ykol) noAt)

then (jrko,no) minimizes (J,k,n) U Un + a(nht) (514 + .)(C - (xjy t ntt)
0 0 ~ jk 42C0 k 0

!j dover (xjYk, nAt) Q " Thus

e? ; U n0  + 2 (n -n)At
j,k Jo,k 0  4 0

(4.15)

- (SM + 2)(0 (CO-hO0 tO-sO) - B(0 - (JAx,kAy), to - nAt))
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for 0 4 n 4 N and all J,k. We next use the monotonicity of G and (4.15) with

n .no -1 to conclude that

n 0n 0-1
U G G(U ~ 0 k
jo ,k 0 f

+ ~ . At -(5K + -2)(~ 0 - 0 t s) -E +c% os At))

(4.16) j0 k 4

-at A+SH/
2  

KB( - ((J0 -p)Ax, (k0 -r)Ay), to - a+ at)

(5m+a/2) AYO (90 - ((j -p)Ax, (k0-r)Ay)), to-go + At),...)

To guarantee the validity of this step we must show that the arguments of g above lie

in [-(L+1),L+1], since the monotonicity is only assumed in this case. Consider a typical

argument of q above, e.g., any of the x-differences has the form

(4. 17) 5K+40 2t~(on ((L+)Ax'SAy), to-so + at) - 0 -(IAx'mAy),t as + At)]

where 1, m are bounded integers,

(4.18) 1 + III, 1.1 4 max(p,r,q+1,s+1) +. 1I

Clearly, the difference between (4.17) and -(SKt60/2)D (to-%,0 to-so), where Ddenotes

differentiation in the first spatial argument, is estimated in the form

cons. C2 (Ax+Ay+At), where the constant involves bounds on the second derivative of

but is independent of C. Invoking (4.12) we find these errors to be at most

(4.19) cons. (At)1'

so (4.17) differs from -(5I + 0/2)D I E (%-n t0 - 0) ya ot 1i ti

sufficiently small. Using the next lemma and these remarks, we see that the arguments of

gin (4.16) lie in C-(L+1),L+1I if At is sufficiently small. (Parts (ii) and (iii) of

the lesma are used later.)

Lamms 4.2. Let (t0 1t 01 %fs 0 ) be as in Lea 4.1 and L be the Lipschitz constant of

u0 . Then

MI (5M+0/2)ID 6 C (of _ L
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Let L 1 1amx(JH~p)i :IpI -CL) and t0 > 0. Then

(ii) - (5M+0/2)D S ( -710 C L - L
t C a v 0t 00  1 4T

If also T > too then

(iii) (5M+C/2)ID t 0 (C 0-1i C_ 0) L I + ar/4T

Proofs By assumption, the mapping F~*u(&,t 0  + (5N+o/2)0 (C-% ,to-so) is maximized at

9- to.Thus for & e 82

(5jM+c/2)(O(C-Yj0,t 0 -80 ) - (o-%tot-s 0 )) 1C U(401to) - uC~t0 )

C LIE 0-0

where the last inequality is from Proposition 1.1 (v). The inequality MI follows at

once. Similarly, t + u(C ,t) -2 t + (SM+a/2)0 (9 -% ,to0 ) is maximized over (0,T]
0 C4

at to >0, so for small h >0

(5b1+a/2)ESC 0 10 t 0 -h-s 0  - S(a o-It 0 -s0 )]

IC (U(Co 1 t) -u(C 01t-h) T

I 4T

where the last inequality is from Proposition 1.1 (v). The inequality (ii) follows at

once. If also T >to# then one makes the two-sided estimate in the obvious way.

Now ye return to (4.16). In this expression we replace each difference in the

arguments of g by the corresponding derivative of -(5M+o/2)B C-r 0, to-so) atE to

thereby creating errors we can estimate - using the locally Lipschitz property of g -by

multiples; of (hX+AY+At)C 2. Then we use the consistency of the numerical Hemiltonian g

with H to conclude that

a C (SM+0/2) 0 C %-%~,t 0 -80 ) - 69(-~to- Csot - At))
At

+ NC-C514+o/2)bD 0C (C 0-',to-* 0 ))

+ (Ax+Ay+At

9-12



where C is a constant one could easily estimate. Making similar argmnts on the t-

difference above, we further deduce that

a -(Sm+0/2)D tCot-)4 ( +/2) t 9L ( 0-%0,to-°o )

(4.20) + H(-(SMno/2)D 0 (Yo to-m O )

+ C ( --- ) .AC
2

Taken together. (4.13) and (4.20) yield

a x~ay+&t
2

(with a new constant C). we again invoke (4.12) so that this becomes'42. + y 1 /2 4
a ( ~hz4y+At)1  c~ y 1'(At)/

which establishes the desired estimate.

We turn to the caes in which one of to  or a. is 0. Zn these cases we do not

need to use the information that u is a solution or the detailed properties of G. We

rely on (4.11) and simple considerations of continuity. lowever, we will restrict 0 to

satisfy

O (Ct) - I- 12 + t
2 ) for II2 + t2 '

(4.21) and

W80 t)<1 for ,C 2 + t2 )I •

In the evn (4.21) holds we know fro Lesm 4.1 (11) that 1 %_%1 2 + (t -) 2  g2.

tS 00 0

Dtoelt0-%O'tO-s0) - . (tO80)

(4.22t) jFq O-O 62 LZ/IION+0)

(4.23) Zf to - T, then it-e 0o1 6 2 (L - L)l(103 +o)

li

_ _ _ _ _ _ _ _ _ _ _ _ _



(4.24) If T to > 0, then it -s01 4CM(L + 1-/0(1N+)

2nd case: to ), 0, so = 0

By (4.11), Proposition 1.1 (v) and the choice of U0

5N4G # (C01t01n0,O) 1C gu(c 0 .t0 ) - u(n%.t 0 )I + Iu(%.to) -U(iyO')I

+ (5140/2) t-not 0-s0 )

4 LIC -no + * t + (5N4~o/2)

The estimate (4.22) holds and either to - 0 or one of (4.23), (4.24) holds. The above

thus yields 0 4. const. e2. and again ye are done.

3rd case, to - 0, so > 0.

In a mannier similar to the above we find (using also Proposition 3.1 (0)) that

(5K+O) 'C 4D(oro'oleo 0 L I F. noI + Kgo + (5t+ 0/2)

and so

0 4 2L I Yno I + *~

We now need to estimate so suitably and invoke (4.22) once more to complete the proof.

From 
W lo n so ( ,~ O s) ) (., ,o s -t

we conclude that

- 0o~ a + (5N+U/2)0 (Yft%,-s0 )

)-U 0- a - (sO-At) + (54+0/2)0 (Y11%.-s 0+t)

where the notation (4.14) is being used. Since 0 C(to-no.t0 -s0 ) - OC(%-rb,-so) ), 3/5 by

Lewm 4.1 and (4.12), (4.21) hold, we can assume that 0 has the quadratic form (4.12)

by taking At emall. The above then beccmes

(5n6+0/2) (2 (aA2 0 1 0 a1 n

-20-
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Analy2ing this inequality, we conclude that so 4 const.(e
2 + &t). Using this in the

estimate on a above yields a f const. (u2 + At) and again c (Ax+Ay+ht) yields

a 4 conat. (x+Ay+At)1/2
.

Proof of the General Case

The remaining atep is to remove the restriction (4.1). There are two possible ways to

do this. We may, for example, follow the uniqueness proof in [1] and replace # by

0 - * + 2
5
S(V,t,11,m)

where 6 > O, C - ZC+40 t+t0 ,y+yOgss o ) and Z e co"u2x t2ni, o , Z , .(o) -

and (Cot 00r,s 0 ) is a point such that

DCoot o,%O~aO) s sup *- .

Then adapting the above proof, one reaches the desired conclusion. (See also 011l).

Another argument makes use of the hyperbolic nature of the problem, namely the finite speed

of propagation. Observe that, without loss of generality, we may assume H(0) - 0

(replace u(xt) by u(xt) + taCO), H by 0 - H(M), g by g - H(M), Un  by 1 U 4 nt).

In the statement of the next result, which was proved in 12], we use the notation B(xR)

for the closed ball in RN with center x and radius R and put DR - 30,R).

Thorems Let U0, v0 e %""(R"), let H e v 1 (it) and denote the semigroup solving

(IVP) by 9(t). Then, if Y0 e A
N 

and u0 (y) - v0 (y) on B(y0 ,R) we have

(S(t~uo)(xj - (S(t)v0)(x) on 8(y0 ,R-Vt)

where V - H'1 I*(a and r - max(IDU0 t1, of IDV 0 )
"

On the other hand, it is clear from the definitions that if UJ, k - Vj,k for

-, , I R-0 1 (R e u) then ,e - vn for 15-JO( K-Rn, Ik-k 0 1 ft-Rn
J,k j,k

with K - max(p,r,q+l,s+1). Thus if u0 I v0  in 9(9,.R) and to - (x0 Y,0 ), and if Un,

Vn are the discrete approximations generated by our scheme, we see that e" .J- k
jjk j,k

for j, k satisfying,

-21-
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X 2 - Xin, Ik - LO - 2 -.un
AX Ax Ay' AY

i.e. IJAx-x0 1 ( (R-2Ax) - (nAt), JkAy-y 0 1 4 (R-2Ay) - K_ (nAt).

A0A

It is then easy to conclude the argument by remarking that, uniformly in ze e R
2
, we

may find R large enough and a Lipschitz continuous v0  with compact support such that:

u0 = v0  or B(z 03 R)i (S(t)u0 )(z) - (S(t)v0 )(z) for Jz-z 0 1 4 1, 0 4 t 4 T; and

Uk - for J(JAx, kAy) - z 1 1, 0 4 n 4 N. Applying the result already proved (as
J,k j,k0

we may since Vn , 
S(t)v 0  also have compact support, Theorem 1 is proved.

We pause to comment on a few of the possible extensions of the preceding results.

First of all, it is straightforward to treat more general Hamiltonians H(x,t,u,Du). For

example, in one space dimension, let H(x,t,r) be Lipshitz continuous in

R x [0,T] x [-R,RP for each T,R > 0. Then an approximation

=j - -Atg(xjto L..L....
n n

n (x,tnU~ p t , + )j n i-p Axq4 A

is consistent if g(xta,...,a) - U(x,t,a) and monotone if U 
1 

is a nondecreasing
i

function ofUn •• n If the numerical Hamiltontan is also Lipschitz continuous on

bounded sets of R x [0,T] x 9 4q+2' we can again estimate Un _ u(x jt ) by a multiple
j jn

of (At)
1/ 2  

if u 0  is Lipschitz continuous. (The simple Propositions 1.1 and 3.1 need to

be appropriately generalized. See [111.)

Next, we could discuss the corresponding stationary problem u + H(Du) - f(x) in

AM as well as boundary value problems (see [9]), but we will not formulate any precise

results here. It is also clear that implicit approximations can be handled equally well.

We conclude this section with some final remarks in the context of the equation

ut + H(Du) - 0 (which apply to its generalizations as well). If one reexamint.s the above

proofs under the assumption that H and g are globally Lipschitz continuous, one sees
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that the estimate on Uk - u(xi.Yk nAt) depends on u. through its Lipschitz constant

L - L(Uo) (provided that u0  is kept bounded) in the form

IU ak - u(xjYk nAt)I C(L
2 (At)

1 / 2 )

(where we assume L in not small and (At) is not large). Using this fact and the

nonexpansive nature of S(t) (Proposition 1.1 (Ui)) and G (Proposition 3.1 (1ii)) we

conclude that if U nk u, V n v are the discrete and exact solutions for initial data

u0  (possibly not Lipschitz) and v0  (Lipschitz), then

Su(xykt)n - v(xy t )I
lj 0k I " Uj,k- Vj,kl + IVj,k - k n

+ Iv(xjYkt n) - u(xJYkvtn)I

4 21u o-voI + C(L(v ))(at)/2

This allows us to conclude the convergence of the numerical scheme for general

e BUC(R) and the appropriate rate. For example, if u0  is BOlder continuous with

exponent a, we can choose v0  above so that the error is at most cons. (At) 
/ (2 (2 -

e
)

-23-

_______



Section 5. Convergence of the vanishing viscosity method.

It has long been standard to attempt to approximate (IVP) by the problem

au ) + H(Du) - CAU C 0 in R x (0,"}
(IVP) T

uC(x,0) u0(x) in R

By analogy with fluid mechanics, this method is referred to as the method of "vanishing

viscosity". If H e w 0 (eN ) and u0 e W'- ( N), standard results and methods for quasi-

linear partial differential equations yield the existence and uniqueness of a solution u

of (IVP) in the class BUC(R" x [0,T]) A C2'1(RN x (0,T)) (i.e., continuous second

order spatial and first order time derivatives) for all T < -. Our main result is

Theorem 5.1: Assume H is locally Lipschitz continuous on RN, u0  is bounded and

Lipschitz continuous on RN  and T > 0. Then, if u' denotes the solution of (IVP)

and u denotes the viscosity solution of (IVP), we have:

(5.1) sup sup lu (x,t) - u(x,t)l 4 c
04t(T xRN

where c depends only on the Lipschitz constants of u0 , H and T.

Proof: To simplify the presentation we will only consider the case when H(0) - 0 and u,

Cu * 0 as lxi + - uniformly in t e [0,T](T < -). The general case is easily obtained

by (now) routine adaptations of this simpler case ((I), (2]).

Assume

(5.2) a - sup sup (u(x,t) - u (x,t)) > 0
04tT xeR

andlet RN xR x R + + R be given by

(5.3) *(x,t,y,s) - u(x,t) - u (y,s) - - (t+s) + (5 + -)B (x-y,t-s)
4T 2 a

where M -lu01, a > 0 and 0B, 0 are as in (4.7), (4.9), (4.21). (We now use x, y to

denote points in Y?.) Just as in the previous case, we conclude that there is a point

(x0 ,t0 ,y0 ,s0 ) which maximizes * over (RN x [0,T)) 2
. Moreover
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I.

(5.4) (x 0 ,t 0 ,y 0 ,5 0 ) D 5M U and 0a(x 0 -y 0 ,t 0 -s 0 ) > 3/5

so that

(5.5) Ix0 -y01
2 + (t0-s0 )2 4 2/2

As before we will consider the cases t0 , so > 01 t0 - 0, so > 0; and t 0 0, e0  0

separately. Before doing so, we review a few properties of u We have the elementary

estimates

(5.6) lu n4 D CN (0,')

(see, e.g., [2], [10]). Therefore H(Du
£
) is bounded independently of c. The following

lemma will then allow us to estimate the modulus of continuity in time of u in the form

(5.7) Ju(Kt) - u (x,s)I 'K / It-s1/2+ Kit-si

Lemma 5.2. Let v e C2' 1 ( x (0,-)) l N x [0,-)) satisfy Ivt - Cv IC X 0  in

A? x (0,-). Then there is a constant K depending only on K0  end sup IDvl such

that Iv(xt) - v(xes)l IC r(A t-sl1/2+ It-s) for x e I? , ts N 0. t)0 Lit)

Proof. Let p e C(R N ) be a standard mollifier supported in the unit ball and satisfying

f p(x)dx -1. Put v a - pa*v. Clearly Iv a- eAVaI K0  in F?. Thus

n v t ul -7 a s )  ' -0 +  e U A V a I . ( ON, )
4 K + R lAv-Iat CLNC0 a (R)

C NR

(x + I ,VI for t•0
L CRM

where c depends only on p. Therefore

Iv(x,t) - v(xs)l < Iv(xt) - v (x,t)l + Iv(xs) - V (xs)I + ( 0 + &C)It-sla a 0 a

4 K(a + It-sl + . It-si)

where K denotes several constants with allowed dependencies. Setting a - L2 It-s I / 2

yields the result.

We now turn to the cases t o •)0, a 0, s O and to - 0, g0 >. flere only continuity

considerations are involved, as before. If to A 0 and so  0 we have
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5M + a 4 C(x0 ,t0 ,Y0 ,0) 4 5M + 7 + lu(y 0 ,t0 ) - u(x0 ,t0 )1

+ lu(x 0 ,O) - u(x0 ,t0 )1

5M +'S + c(Ixo-YoI + tO)

Now, in a manner similar to (but simpler than) the 3rd case in Section 4, we can conclude

that Ixo-yo0  and to  are bounded by multiples of a2 and so a 4 ca
2  

in this case. If

a -
/ 

, we have the desired estimate. The case to - so - 0 is subsumed under the one

just treated. If to - 0 and so > 0, we have

uC(yo,eo
) - (SM+a/2)BO(xo-yo,-s 0 ) + - so C

0 4T0

u C (Y00 ) - (5M+o/2)B a(x0 -y0 0 )

From this and (5.5), (5.7) we deduce an estimate

o •K(/a v + S
20 0

1/3 4/3 2
where K is independent of a. This implies that o C K(0 M a + a2). Now 5M+o <

(XooOo o )  514 + + K02 + Kr, V9o + Ke . Using the previous est-.ate and letting

a C4 we conclude that a C Ke/2.

The final case, 5 o > 0, to > 0, useL the equations. From the fact that u is

Lipschitz continuous in x and t we deduce that I xBx(x 0 -Y0 ,t0 -s0 ) ,

IDtBt(x0-y0 t0 -s0 )1 are bounded where Dx, Dt refer to the derivatives of Ba(x,t). This

implies

(5.8) Ix0-Y0 1, It0-s0 1 4 Ka
2

Using that u is a viscosity solution we have

T2- (5M+a/2)(O Mx0-y0 ,t0 - 8O ) +

(5.9)
H(-(5M+o/2)(D x a ) (x0 -y0 ,t0 -s0 ]) C 0

On the other hand using u 6 C2 ,1 and that (y0 re0) minimizes (y,s) * *(x0 ,t0 ,Yus)

over ? x (0,T) we also have

-26-



(5.10) utS0) + - + (5M+o/2)(D t )(x 0 t0-)) 4 0

(5.11) Du(y,s0) + (5M+0/2)(D xB )(x -Y0 t-s ) - 0

and

(5.12) Au(ys0) - (5M+0/2)(AB)(X -yo,to-60 ) ) 0

Now proceed by using uC + HI(Du C) - CAu - 0, and (5.10), (5.12) to deduce that

C(5M+a/2)ClABa )(x0 ,t0-40 )) - H(-(5M+a/2)(D x a )(x0-y 0  0

+ I + (5140/2)(DtB )(x 0 -y 0 ,to-s0)) • 0

Now, using (5.9), we conclude that

L- 4 
€ (SN+a/2)(A )(2 -y 0 It0-0

and this yields 0 4 KS/z2 . Again if a !/4 we have the desired estimate.

Remrk. By contrast with the analysis in Section 4, the LipMchitz Continuity of H was

used only to asert that (Zvp)C has a smooth solution. If H is merely continuous one

still has and Au' in L? 0U? x C0,i)) for 1 4 p < *and the estimate (5.1) can
ut toe

still be prove4.
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associated initial-value problems almost never have global-time classical
solutions, and one must deal with suitable generalized solutions. The correct
class of generalized solutions has only recently been established by the authors
This article establishes the convergence of a class of difference approximations
to these solutions by obtaining explicit error estimates. Analogous results
are proved by similar means for the method of vanishing viscosity.
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